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INTERNAL WAVES OVER A CONTINENTAL SHELF

Takashi Ichiye
Oceanographic Institute
Florida State University

1, Introduction:

Rattray (1959) developed a theory on internal tides caused
by oncoming surface tides over a continental shelf on a rotating system.
He considered the case of surface tides with wave lengths much larger
than a width of the shelf which is assumed to have either a uniform or
linearly increasing depth. The internal waves thus generated are
standing waves over the shelf and progressive waves travelling seaward
in the open sea. The amplitudes of the standing waves are large com-
pared with those of surface tides and also with those of the progressivc
internal waves indicating spectral structure with maxima and minima
according to frequencies.

However, internal waves which are observed over a continental
shelf have sometimes periods different from tidal periods and also
they propagate in directions other than normal to the coast., The
present study deals with the waves travelling in two-dimensional
directions in regards to the coast in a two-layered sea. Although
the effect of Coriolis' force is also included, a wide range of periods
of the waves is assumed.

2, Fundamental Equations:

In a two-layered rotating ocean, the x and y axis are taken
perpendicular and parallel to the coast, respectively. The density
difference between the two layers is taken as AP and the effect of
friction is neglected. The equations of motion for the upper and
lower layer are respectively:(with & = 49/ 2)



R L e

AW /ot - fu’=-398/ox (1)
dV’/ot +FwW=- 3§95/ ey (2)

and '

W bt S =-9 (1- 8)P%H0-38 957y
AVUTott W =-3(1-8)(8%9)-985385Y W

The equation of continuity is, for the upper layer:
R W) fox+ IWRIW) oy = 38%5¢ - 38/t (%)
and for the lower layer:
(R U fox+ R VY = - 38°/at 6)
In these equations a primed quantity refers to the upper
layer and a double-primed quantity to the lower layer; ( and U}
are the horizontal components of velocity; g is the elevation of the
upper surface of a layer; ﬁ_ is the layer depth; and g and f are a
gravity constant and Coriolis' coefficient, respectively.
It is assumed that the depths 'K / and £" are independent on
44 and that the quantities {{ , U and §are proportional to et(O’ﬁM?
Using (( , 1, and 5 for the factors of the exponential
term, the velocity components in the upper and lower layer are expresse.

T oD w= g (oh RS o
(6°-5% 1/ =-g (§& + 5k) 8/ ®

from equations (1) and (2) and
(C*-$2) w=((¢0 ﬁi—f&)(ﬂ"@'*?'g') (9)
(6§ V'=-(f§ 16K)(3"6'19°¢) o

from equations (4) end (5), respectively, where

&’ = g8& 5 2*=§(réD (11)
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Substituting (7) and (8) into (3), we have:

(4187 (64 + 580} - 487 (56 + oG’ = a2

Similarly, from (9), (10) and (6), we have: 010 %S’
1418 (6f +5005- kR (54 +5RJ34)=6T6-) e )™
| Elimination of g" from (12) and (13) yields:
6H62#) 57+ 6 (6% {2)gPRIS+g 3 PIRIPAY S,
where H= f7+ ‘ﬁ h md]P(H)u a differential operator defined

TP & 1H (kv shf -HA G +6R) ay

From this definition, there is a relation like

P& = PED + [P 16)

3. Waves in the sea of a uniform depth:

When the depths ﬁ/ and "’ are uniform, equation (24) can be
separated into two modes; g" for barotropic mode and g‘:’ for baroclinic
mode, such as:

-5 85 13h (F-408/=° o
(62T 3 (44K (4 -4) 5/ =0 as)

The elevation of interface .g" can be expressed in terms of é"by
use of (13). Substitution of (17) and (18) into (13) yields:

s = (A" /8) 8, (19)
f,f" - el g/ (20)

where & 1is a small constant of order of magnitude 10'3 since it is

defined by: ‘- ) (e'/ﬁ,,) 5-/_&“’ ~ 5({::/&)
(21)
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The velocity components ({7, 1V and u”, 2! can be determined
in terms of g“’ or gc‘/ from equations (7) to (10). For the barotropic
mode equation (19) indicates that Q’A and 52 are of an equal order
of magnitudes., Therefore, the velocity components of the upper and
lower layer of this mode have relations:

’ /
Ueg = Usg 5 U’ = 1A (22)
since Q'f,v_, g and 9’ <& 3- . Expressing the right-hand side of
(9) and (10) with g: by substitution of (20), we have:

Brul=-Rul ;BT R @

Therefore, elevation of the interface and velocity components
of the lower layer are expressed by corresponding quantities of the
upper layer. However, since equation (20) with (21) indicates that

g ¢ 1s about 10°2 times g 4 , it is convenient to express ele-
vations and velocity canpononts of the baroclinic modes with g ¢ .
Also hereafter g / g is sometimes called surface waves (do not confuse
with those in a sznse of deep sea waves) and internal waves, respective:

1f a wave number of y direction is assumed to be k , the
elementary solutions of (17) and (18) can be expressed by

g = exp (Limx+ cky+cSt) 24)
6. = exp(Lnxtchy+ (Ot) (25)

24mr = (62 ) Cgh)- (= &;) (26)
kz+ m* = (6'2:. ]Cz) A (;/#,%’Q_I("*;}ZD

in y»:hich

When M or 7) 1is real, the elementary solutions (24) and
(25) represent the plane waves. The directions in which those waves
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propagate make an angle of + tan'l(m/k) or ¢ tan'l(n/k), respectively,
clockwise with the negative y-direction. The wave number akmor o@"
measured along the direction of propagation of surface and internal
waves 18 equal to the equare root of the right hand side of (26) or (27)
respectively.

The plane waves are possible only when G > f o InTable 1
the wave numbers and corresponding wave lengths measured along the
direction of propagation are shown for waves with periods of half
day and one hours, respectively, in the sea of 30° latitudes. Two
kinds of depths of two layers are assumed, corresponding to the con-
tinental shelf and the open sea. It is seen that the wave lengths
of internal waves are much shorter than those of surface waves.

When G<f‘ , the right hand side of (26) and (27) becomes
negative and thus, yn and 7} are always imaginary when & is assumed to
e real. In case of G~ >4 , when k exceeds ‘%’m or &n , Mor M
becomes imaginary,

If it is assumed that the sea consists of the semi-infinite
plane of positive)( to the right of the coastline of y-axis, the ele-
mentary solutions which are finite in the infinite distance should have
a negative coefficient for X when Morn becomes imaginary. These
solutions represent the waves called Kelvin waves which propagate along
the coast with amplitudes decreasing exponentially from the coast
(Lamb, 1945 p. 319).

In presence of the coastline on the y-axis, two solutions
corresponding to double signs in (24) or (24) with real ™M or Y
represent the incident and reflected waves propagating obliquely with
the coast,

In case of 6 > f- , three combinations of different
types of waves in the surface and internal mode are possible, according
to the values of §&, . For a range of {¢ satisfying 4 < 4m » both
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surface and internal waves are plane waves. For a range &.,,7k 7.@,”
the surface waves are of Kelvin wave type, while the internal waves are
plane vaves, For a{Q > vk'n 3 both are Kelvin waves. Only the last
combination is possible for the case of 6 < &~ .

In case of both waves being plane waves, the propagating
direction of the internal waves is closer to the x-axis compared to the.
direction of the surface waves since 27 < 77 for the same value'
of /Ie . It is easily seen that the surface Kelvin waves can generate
plane internal waves moving away from the coast for .b.,, 74@ 7&," .
The values of &m and &»n for the open sea listed in Table 1
indicate that the waves of tidal periods most likely have this range
of values of k .

The velocity of Kelvin waves can be determined from a
boundary condition at the coast. Vanishment of the velocity component
normal to the coast determines the specific value of ,e for each of
barotropic and baroclinic modes, for which velocities of Kelvin waves

<4 217" =\ 2
become (3h)2 and (9 h h” ) Z respectively. It must be noted
that these velocities are independent on the rate of rotation of the
earth, On the other hand, the propagating velocity of plane waves
depends on the Coriolis coefficient as seen in the equations for ,@ '
and £, of (26) and (27).



TABLE 1. Wave Numbers and Wave Lengths of Plane Waves

SHELF

Depth h'(M) h''(M)
50 150

Period 1/2 day 1 hour

k@)  2.86 x 10°° 3.96 x 10°
27d km (KM) 2200 154
k@& Y  0.146 2.02
2] kn (KM) 43 3.1

Note: M = meters

KM = kilometers

£e7.3x%10% (sec’])

§=2x107

OPEN SEA
h' (M) h'(M)
50 150
1/2 day 1 hour
0.91 x 10”3 1.26 x 10°2
6900 498
0.128 1.77
49 3.6

FIGURE 1, Schematical Configuration of the Ocean with a Shelf
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4, General mathematical problems on waves over a shelf,

It is assumed that a continental shelf consisting of two
layers with arbitrary depth distributiones is bounded by the straight
coast at x = 0 and by the straight edge at x = [ , from where the open
sea with two layers each of a uniform depth extends infinitely to the
direction of positive x-axis. The quantities related to the shelf and
the open sea are distinguished by suffices 1 and II, respectively, if
such is necessary. (See Figure 1)

As an example, a mathematical problem on waves over the shelf
in the barotropic mode (or for a uniform density) is considered. In
this case, equation (14) which must be satisfied over the shelf becomes
the second order ordinary differential equation with x, since g' = 0.
Therefore, it has two elementary solutions. In the open sea the surface
clevation must satisfy equation (17) only, which also has two elementary
solutions., When the waves in the open sea are of plane wave type,
that is, m and k are real, these two solutions represent respectively
incident and reflected waves. Four unknown coefficients of elementary
solutions on the shelf and in the open sea can be determined except
for a common factor from three boundary conditions: two conditions
at the edge postulate continuity of elevation and current flux normal
to the edge and one condition at the coast postulates vanishment of
the normal component of current flux. This mathematical problem can
be interpreted physically as such that amplitudes of stationary waves
in the shelf and those of reflected waves in the open sea may be deter-
mined as the ratios to the incident waves.

When the waves in the open sea are of Kelvin wave type,
there is only one elementary solution possible in the open sea repre-
senting waves propagating parallel to the coast. However, three
boundary conditions must be satisfied as in case of the plane waves.
These boundary conditions specify the value of 4?_ which becomes equal
to & (gh ) 1f the open sea is bounded by a straight
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coast only (Lamb, 1945).
For simplicity a continental shelf with a uniform depth
«I is considered. The solution of equation (17) for the elevation
over the shelf is expressed by:

&, = Aeimty BemMiX  an
and for the elevation in the open sea:
£ = E e-"moX (29)
vhere mI_and m I are defined by:
mp® = (2-5) (ghn)™ - k¥ (308)
mi = - (62§*)(ghp)” + p2 (30b)

The boundary condition at the coast (x = 0) that ({, = O
yields the relation

B/A = = (M tfh) ((Shype—fk)™! (31)

The boundary conditions that L(r= Ug and gI = gn at 11[ yield
the equation for k :

Re(SR+ M, Uy)= Ax (F - 6"mM1) (32
inwhich  f(, = (e C™rl_ y e-mrﬂ)/(e“"r",«,ac""@(sa)

1f the depths of the shelf and the open sea are nearly
equal, the presence of the shelf does not noticeabley affect the mode
of waves in the open sea. Therefore, it is considered that the value
-4

of kaatisfying (32) is nearly equal to o (3 h u) 2 ( ‘-—'*o) which
satisfies this equation in case of no shelf. In fact, if the solution
of /g in (32) is expressed by

4 = 4.+ X (34)

it is easily seen that ) becomes a small quantity compared to &0 ’
by substituting (34) into (31) and (32). (Because /a'/ diminishes to
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zero if () 1s taken positive, the equation (32) becomes almost the
same as in case of no shelf.)

More interesting is the case, in which the depth of the
shelf is much less than that of the open sea, corresponding to an
actual situation. This condition leads to the value of u nearly
equal to unity, if 6 is not nearly equal to f- . Further, if the
width of the shelf is not so large, the effect of the shelf on the
waves in the open sea is considered not to be conspicuous. Therefore,
substitution of (34) in equation (32) yields, after a little manipu-
lation:

X= R § (6 Motfan mod-kot) [ G2 f20-)! @5
Where/h Re/Rr 5 m2= (0= f2) (ghsy - 67 (3/")-,(36;, b)

If we take a following numerical example:
‘ﬁI = /oo (m) , {n = Q000 (m), 6’=/\43XIO-¢(5€L”)
f=Lt6 , L= 200 (hm>
equations (34) to (36) yield ‘
521074 Ccm ) Mo=3.3x10™Cem), X=Tx1078 (cm~")
Therefore, the condition that ) is much less than ,#ois satisfied.

In the two-layered ocean, mathematical problems to be
solved can be physically interpreted almost similarly to those in the
ocean with a uniform density. If /9”746 in the open sea, or the
waves both of barotropic and baroclinic modes are of plane wave type,
four elementary solutions representing incident and reflected waves
of both modes are possible. The equation (14) yields also four
elementary solutions over the shelf. Therefore, there are eight
unknown coefficients to be determined from boundary conditions at the
coast and at the edge of the open sea. The conditions at the coast are
two' in number, postulating vanishment of current flux in each layer
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normal to the coast. The conditions at the edge are four in number,
postulating continuity of elevation of the upper surface and of flux
normal to the edge in each layer. Thus, six unknown coefficients
including amplitudes of reflected surface and internal waves can be
determined from these boundary conditions as ratios to amplitudes of
incident surface and internal waves: two supposedly known coefficients.
Rattray's theory (1959) is a special case in this type of wave system
in which the waves propagate normally to the coast. He assumed
further that there is no incident internal waves. Therefore, in
principle the six unknown coefficients can be expressed by the ratios
to the amplitude of the incident surface tides. He assumed further
that the width of the shelf is much less than the wave length of sur~
face tides, Then the elementary solutions representing incident and
reflected waves of the barotropic modes become constant in a range

of ) small compared to this wave length. He expressed two unknown
coefficients representing amplitudes of internal seiches in the shelf
and of reflected internal waves in the open sea in terms of the surface
tides consisting of incident and reflected waves.

In the open sea, if -‘k P4 ‘?Q'n. or the waves of both modes
are of Kelvin wave type, numbers of possible elementary solutions are
two. In the shelf there are four elementary solutions as in case of
4& < ‘k-m . The numbers of boundary conditions are six as
before. These six boundary conditions yield six linear homogeneous
equations on the six unknown constants. Therefore, in order to
obtain non-trivial solutions, thedeterminant consisting of coefficiente
to the unknown constants in the six equations should vanish. This
condition leads to the equation for k simi].a;?equation (32) which
is the result for a uniform oecean.

In the open sea if £n >k > R , the waves
of barotropic or baroé¢linic mode are respectively of Kelvin wave or
plane wave type. If there are incident internal waves in the open
sea, the numbers of elementary solutions are three. Since the numbers
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of elementary solutions on the shelf and of the boundary conditions
are the same as in other cases of the two-layered ocean, six unknown
coefficients can be determined as the ratios to one known coefficient,
say, the amplitude of the incident internal waves. This model cor-
responds to a case when the internal waves oncoming from an infinite
distance are reflected by the shelf. However, more practical is a
problem in which the surface Kelvin waves in the open sea generate the
internal waves outgoing from the shelf area. In this problem there
are no incident internal waves in the open sea. Therefore, six
boundary conditions yield six linear equations about six unknown
coefficients as in case that & yd MK The characteristic
equation for &‘ is obtained in order to avoid trivial solutions. The
details of this case is discussed in the next chapter, since this seems
to happen most commonly in an actual ocean.

5. Waves on a shel f with a uniform depth.

Physical features of the wave system corresponding to a case
vhen <R < fon in the open sea are clearly explained with
a u;odel of the simplest geometrical configuration; a shelf and an open
sea,\uniform depths and a constant depth of the upper layer. It is
assumed that the internal waves are generated by the presence of a
coast, eliminating incident internal waves in the open sea. The
elementary solutions of barotropic and baroclinic modes in the open
sea are given by

/ = -Mpy X 37
o Ee 37
., = tNgX
- 38
§CI =Fe (38)

and those in the shelf are: i x .
Sir=Ae ™Mt BeTtMeX (39)

\ -LM X
g’ =Cet"t* +De : (40)
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where suffices I and 11 refer to the shelf and the open sea, res-
pectively. Since & : is smaller than g A’ by one to two orders of
magnitude, the elementary solutions of barotropic mode are represented
in terms of e:' instead of 4§ : . In equations (37) to (40),
Mpand 77y must be real and positive, while M yand 7y may

be either real or imaginary.
Boundary conditions at the coast (x = 0) are

/ - " —-—
Urg=e 5 WUg=0 (41a) (41b)
Since u’ = u.g -+ u’(- and u'= I,(‘;'wru:- , boundary
conditions (4la) and (41b) with (22) and (23) yield

’ - - ” - [/} - - (42)
ucr ’“,s: - u(,‘I - usr'o (MJ O)

Substituting (39) and (40) into (7) and (9) with conditions
(42) yields:

B/A=p= (come+ f£) /(LM =RE)
D/c =V = (6N +fR) / ((Cn: ~RSE) (o

where the ratios B/A and D/C are designated by }(and )/ , respectively.
Continuity of e1§vation of the free surface at the edge of

the shelf (x = [ ) yield ‘,tg th an approximation g ’wsa’ . When
equation (19) is used)continuit:y of elevation of the interface at the

edge yields ( Ee -yl _ =A (e‘m‘ ,4/ 8"."’/) (45‘))

= RnQ + Fe-t"zlt

 where = r ; RI-K” /{z_ (47)

COntinu:l.ty at x - [ of current fluxes nomal to the edge
of the shelf yields reapectively in the upper and lower layers:
Usgt U . = Uy +U T (48)

'R”(Usz"“ 1)= Rr (L(sm"'“«‘zr) (49)
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Substituting relations (22) and (23) into (49) and elimin-
ating u’ by use of (48), we have:

‘ﬁru,‘z- fﬂ.adl (50)
instead of (49). The boundary conditions (50) and (45) yield the
same equation for kz as equation (32) by eliminating A, B, and E of
&%y and § 4; x - This relation (32) yields the proper value of £
as in case of a homogeneous ocean. For this value of 4 , the ampli-
tudes of internal waves C and F can be determined in terms of E orQ
from the boundary conditions (46) and (48).

Equation (48) 1leads to

My ('IQV'HS'"IVO-)C )ln_(fk-cinx_)r—'e“”l/

=R 5 (my = Mz Aen ms L) -
where
Vy=e Mty -zl (52)
Va = e(:”x?.—ye-(‘”x[ (53)
Eliminating F from (46) and (51) we have:
(gl (R§=-CoND-R(FRY+H 6MVa)] C g

=[ (Rg-Re) Ny (5k —CENEL)- T (Mg Mz tan Ma
The assumptions which were made in deriving equation (35)
lead to the following relations among constant s included in equation

(54).

£~ 6 (9 hu)'i(=k’o) (55)
-He<<6"nz N {h«(”ln—, (56a,b)

’}Z.r.'vz—;ﬁu] (},’)))7 'ﬁ'&"J (‘ (57a.b)

’m ’A’,T ﬂhn(g'ﬂ l)) ’mll"?%' ( ;;73) (58a,b)
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With these relations (55) to (58) equation (54) can be written as:
acl o ki d¥r ( (My/Re)* SNk, 2] (59)
T @ ( g - }11 - L‘ '\P)

AL = (X My 'ka.)—' (’Mz" m, tan ’M,,l)

These approximation formulas yield the amplitude of reflected internal

T E ekl ook g+ (Na/Rg)Esiv k1]
= -([(‘11"’11) (KL/RE)tM “'9+¢COSA'G&(61)

The relation (56a) leads to an approximation }/ ~ / . .
The amplitude of the internmal seiches in the shelf is given by 2C.
In order to compare with the result of Rattray (1959), the amplitude
of surface Kelvin waves Q is assumed to be equal to that of the
sur face tides of his theory. If Ar 1is the amplitude of intermal
seiches of his theory, the ratio 2C/Ar is given by:

ac /A, == —Za-Rz= LY
(Mo =rz) (1t kat) (62)

In Figure 2 the curve of '¢} "against the ratio § /f-is
plotted., The same values of depths of both layers, § and-f as
listed in Table 1 are used. The width of the shelf 1 is equal to
100 lm. The curve indicates that internal seiches due to the surface

where (60)

Kelvin waves become much larger than those due to the plane waves
propagating normal to the coast as the period approaches to one
pendulum day. This situation is more clearly illustrated in Figure 3,
which shows the amplitudes (ratios to the surface tides) of the
internal seiches and outgoing internal waves in the open sea as .

4 -
functions of 2 4,1 > = (‘éz. o~ for frequency 6 = /-/{ and
@ = R4~ , respectively. For the surface Kelvin waves, 2C/ Q and
F/Q) are determined respectively from (59) and (60), and for the
plane waves, equations (34) and (35) in Rattray's (1959) paper are
used, The same physical and geometrical constants as Figure 2 are
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used, It is seen that both internal seiches and internal reflected
waves generated by the surface Kelvin waves become conspicuous for the
frequency o = 1.1f.

6. Internal waves with a period of a pendulum day.
In case that o = f, equations (7) to (10) are reduced to two

(gi+4€)§'= o j ({i ‘rk)g”zo (63a,b)
The solutions of these equations are:
€= Me-%®x j 5" =N e kX (64a,b)

If the sea 18 assumed to extend from x = 0 to positive x, the waves

equations:

vwhich are finite at an infinite distance must propagate to the dir-
ection of negative y, (Kelvin waves) because k should be positive in
(64a)and(b). Substituting (64a)and(b) into (1), (3), (5) and (6) and
eliminating v' and v", we have: y
- ' 20’ ! - -
4 (f/w)-RRW=i[g4*R'sM reln-M]e™ e

> &

4 (Rrur-RR W= L (R0 Mg N-NIe TG,

Boundary conditions at x = 0 are vanishment of h'u' and h''u'".
Integrating (66) and (67) with these conditions, we have:

Ru'= e R [6(N-M)0-e 2R /2k) g k"M R "3;2“7 3 Jen
fur = (et N (e ) kPR (g g W) Rre 2]

The boundary conditions that h'u' and H'"u'" are finite at x =
postulate the relations:

s'“(N-M)'HlHQaM_(:ﬁ'e'ahdlwo (69)
-6 N +R3(g"M T §'N) f:oﬁ"e'ﬂkxdl =00
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Equations (69) and (70) yield the characteristic equation of k for
non-trivial constant M and N,

1f the shelf and the open sea are assumed to have uniform
depths as in the previous chapter, equations (70) and (71) become:

G 2- 9R*R')M- 6*N=0 )
" / /7 V. I/’Af_ AN =
(g Mg W) (.- A€ 4o 58

Elimination of M and N from (72) and (73) yields:

” »” —2" _ ? / '2 4[ I/ 'I' ,Xﬂ
gkt L4, (s 4)e M- 998 0%k [+ (4 #5
This transcendent equation for k has roots of barotropic and
baroclinic modes. For the barotropic mode, k satisfying (73) is
I X
nearly equal to S ( ?/) .E) l—(=.k°) and yields 49[((/ .
The second approximation of k is obtained from (73) and N/M is given

by (71). b o I? T e+ (G’-#,;’)e"*”ﬂ—ioa)
N /M~ Ci- 4’ /fz) a3)

Equation (75) is the same as equation (19) which was derived with the
assumption that f #— ( . For the beroclinic mode, the value of k
satisfying (73) leads to 4 />>/. Equations (74) and (72) yield
respectively k  and - N/M:

o [Ao/gR L] < (76)
N/M 2z (- 8§ B</#1) an)

Equation (77) is essentially the same as (20). Equation (76) indicate:z
that the internal Kelvin waves in this system must have the wave
velocity of internal waves on the stedf with no rotation.
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Fig. 2 Amplitude ratio of Ichiye's to Rattray's internal waves
(outgoing) against o/f.
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Fig, 3 Amplitudes of internal seiches (full lines) and outgoing in-
ternal waves (broken line) for Ichiye's (indicated by I) and

Rattray's (R) _l_:iﬂg %.
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7. Summary and Application.

The wave system in a two-layered rotating ocean bounded with
a shelf having a straight coastline and a constant width can be sum-
marized according to relative magnitude of its frequency ¢ and the
Coriolis' coefficient £.

(1) o> £. The wave numbers k, km, and kn indicate those in the dir-
ection of the coast, barotropic and baroclinic mode of the open sea,
respectively. (a) k{km. Both modes arc plane waves propagating in
different directions (the barotropic waves with a larger angle to the
coast). (b) kn) k) km., Barotropic and baroclinic modes are respect-
ively Kelvin waves and plane waves, k corresponds to barotropic
Kelvin waves. (c) k}kn. Both modes are Kelvin waves, k corresponds
to internal Kelvin waves.

(2) o<f . Both barotropic and baroclinic modes are Kelvin waves. The
characteristic equation yields the values of k almost separately for
pavotrcpic and baroclinic modes,

Energy relationships between incident and reflected waves
of both modes may be discussed in a similar manner to Snodgrass and
others (1962)., However, the primary purpose of this work is to sug-
gest a qualitative explanation on the observed temperature fluctuation
of tidal periods at an offshore platform in the Gulf of Mexico near
Panzma City, Florida (Salsman, 1962). The BT records indicate that
the oscillations of the thermocline have amplitudes reaching as great
as 30 feet with a period of diurnal tides during tropic tides, but
that these oscillations are much smaller in amplitudes and irregular
in periods during equatorial tides. A pendulum day on the northern
Gulf Coast is nearly equal to one day. The surface tides of the area
considered are diurnal during tropic tides, but of mixed type during
equetorial tides, However, tidal ranges during the latter almost
reach half of those during the former. Therefore, if the amplitudes
of internal tides are simply proportional to those of the surface
tides, the oscillations of the thermocline during equatorial tides shou
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reach half of those during tropical tides. Also Rattray's (1959)
theory indicates that the amplitudes of the internal waves decrease as
the period approaches to apendulum day. His theory is based on an
assumption that the surface tides propagate perpendicularly to the
coast. However, a cotidal chart of the Gulf of Mexico suggests that
the tidal waves move parallel to the northern coast. Therefore,
Rettray's theory is not applicable to the area considered. The result
obtained in Chapter 5 suggests that if the surface tides propagate
parallel to the coast as Kelvin waves, diurnal tides may cause much
larger internal tides than semi-diurnal ones owing to the condition
that a pendulum day there is close to one day. The result of Chapter 6
poatulates that if the period is exactly equal to a pendulum day,
large internal tides may be generated only when the surface tides have
a wave length nearly equal to that of the internal Kelvin wave, The
surface tides may have components of small magnitudes with such wave
length because amplitudes of 1 cm can generate internal waves of about
10 m according to equation (77). Also, see Summers and Emery (1963)
for observations on waves normal to the coast.
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Errgta

Pege 3 line 2. Read —6 (6L §2)&" for the r.h.s. of
equation (12).

Substitute equation (13) for (12) and vice vw¥fd.



